skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Schrier, Joshua"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 14, 2026
  2. Aqueous, two-phase systems (ATPSs) may form upon mixing two solutions of independently water-soluble compounds. Many separation, purification, and extraction processes rely on ATPSs. Predicting the miscibility of solutions can accelerate and reduce the cost of the discovery of new ATPSs for these applications. Whereas previous machine learning approaches to ATPS prediction used physicochemical properties of each solute as a descriptor, in this work, we show how to impute missing miscibility outcomes directly from an incomplete collection of pairwise miscibility experiments. We use graph-regularized logistic matrix factorization (GR-LMF) to learn a latent vector of each solution from (i) the observed entries in the pairwise miscibility matrix and (ii) a graph where each node is a solution and edges are relationships indicating the general category of the solute (i.e., polymer, surfactant, salt, protein). For an experimental data set of the pairwise miscibility of 68 solutions from Peacock et al. [ACS Appl. Mater. Interfaces 2021, 13, 11449–11460], we find that GR-LMF more accurately predicts missing (im)miscibility outcomes of pairs of solutions than ordinary logistic matrix factorization and random forest classifiers that use physicochemical features of the solutes. GR-LMF obviates the need for features of the solutions and solutions to impute missing miscibility outcomes, but it cannot predict the miscibility of a new solution without some observations of its miscibility with other solutions in the training data set. 
    more » « less
  3. The title compound, [Al 4 (CH 3 ) 8 (C 2 H 7 N) 2 H 2 ], crystallizes as eight-membered rings with –(CH 3 ) 2 Al–(CH 3 ) 2 N–(CH 3 ) 2 Al– moieties connected by single hydride bridges. In the X-ray structure, the ring has a chair conformation, with the hydride H atoms being close to the plane through the four Al atoms. An optimized structure was also calculated by all-electron density functional theory (DFT) methods, which agrees with the X-ray structure but gives a somewhat different geometry for the hydride bridge. Charges on the individual atoms were determined by valence shell occupancy refinements using MoPro and also by DFT calculations analyzed by several different methods. All methods agree in assigning a positive charge to the Al atoms, negative charges to the C, N, and hydride H atoms, and small positive charges to the methyl H atoms. 
    more » « less
  4. Low-cost self-driving labs (SDLs) offer faster prototyping, low-risk hands-on experience, and a test bed for sophisticated experimental planning software which helps us develop state-of-the-art SDLs. 
    more » « less